Pengar, bankkredit och ekonomiska cykler, kap. 4.5

HELA BANKSYSTEMETS KREDITEXPANSION OCH SKAPANDE AV KONTOMEDEL

 Vi har redan sett enskilda bankers stora kapacitet att skapa omloppsutlåning och depositioner. De är de facto normalt sett kapabla att fördubbla sin penningmängd på egen hand. Vi skall nu se hur banksystemet med fraktionella reserver i sin helhet ex nihilo ger upphov till en mycket större mängd depositioner och för med sig mycket större kreditexpansion. I detta avseende producerar systemet med fraktionella reserver effekter snarlika de som en bank med monopolställning ger. Vi kommer att grunda vår demonstration på det mest allmänna fallet, ett banksystem bestående av en grupp normalstora banker, där varje bank håller kassareserver, c, på 10 procent. Vidare underlåter sig kunderna till samtliga banker att ta ut 20 procent av den beviljade utlåningen (alternativt återvänder 20 procent av omloppsmedlen till banken eftersom ett betydande antal slutmottagare också är kunder till banken). Följaktligen är k=20 procent.

Låt oss anta att person X sätter in 1 000 000 p.e. på bank A. Banken gör sedan följande ingång i sin bokföring:

32

Bank A skulle då kunna skapa och ge ut lån till Z för ett belopp som bestäms av formel [3]. Resultatet är följande konteringar:

33

 Och eftersom k = 0,2 skulle 80 procent av utlåningen tas ut, vilket ger följande ingång:

34

Balansräkningen för bank A efter dessa ingångar skulle se ut såhär:

 35

Låt oss anta att Z, efter att ha gjort ett uttag från sitt konto, betalar Y, som är kund till Bank B och sätter in sina pengar där. Tre ingångar sker då parallellt med den ovanstående. Formel [3] används återigen för att bestämma beloppen.

36

Efter dessa händelser hade balansräkningen för bank B sett ut som följer:

37

Om vi föreställer oss att V betalar tillbaka sin skuld till U, som i sin tur sätter in sina pengar på sin bank, Bank C, så uppstår följande konteringar:

38

Banken gör denna sista ingång när R tar ut 80 procent (k=0,2) av sina lånade pengar från Bank C för att betala sina långivare (exempelvis T).

När väl dessa handlingar har fullgjorts kommer balansräkningen för bank C att se ut som följer:

39

Och om långivare T, när han tar emot de pengar som han utlovats, sätter in dem på sin egen bank, Bank D, blir resultatet dessa konteringar:

40

Banken hade gjort denna sista kontering i sin bokföring när S betalar sina långivare.

Vid det här laget hade balansräkningen för bank D sett ut enligt följande:

41

Processen fortskrider på detta sätt och kedjan av depositioner och lån utbreder sig till alla banker i systemet. När effekterna av den ursprungliga depositionen på 1 000 000 p.e. helt har upplösts hade det totala värdet för depositionerna som skapats av banksystemet varit lika med summan av följande talsekvens:

 [21]

 

 

Detta är på grund av att r – i vårt exempel – hade varit lika med 80 procent (1–k) av andelen nyskapade saldon av varje bank i varje led. Denna andel kommer från formel [3] och är lika med:

21b

Därigenom:

22-24

 

 

 

 

 

 

I detta exempel står ds1 för Bank A:s sekundära depositioner och uppgår till 1 219 512 p.e.

Kreditexpansionen i nettotermer som hela banksystemet frambringar, x, vore lika med:

25

 

En sammanställning av dessa resultat finnes i Tabell IV-1 och i Diagram IV-1. Detaljer ges för varje medlemsbank i betalningssystemet.

LÅNESKAPANDE I ETT SYSTEM AV SMÅBANKER

Låt oss nu anta att alla banker i systemet är mycket små. Alla har ett k-värde som är lika med noll och ett c-värde som är lika med 0,1. Om vi följer mönstret av tidigare konteringar så hade bokföringsingångarna för detta banksystem sett ut på följande vis:

IV-1

En insättning på 1 000 000 p.e. görs på bank A:

42

Graf

När Z tar ut 900 000 p.e. för att betala Y ser balansräkningen för bank A ut enligt följande:

43

Om Y, i sin tur, sätter in 900 000 p.e. på sin bank, Bank B, även det en liten bank med ett k-värde på 0 och ett c-värde lika med 0,1 så uppkommer följande konteringar:

44

Och balansräkningen för bank B hade sett ut såhär:

45

Om V tar ut sitt lån från sin bank för att betala U och U sätter in pengarna på sin bank, Bank C, en annan liten bank med ett k-värde på noll och ett c-värde lika med 0,1, så gör Bank C dessa ingångar i sin bokföring:

46

Och balansräkningen för bank C skulle se ut enligt följande:

47

När T betalar sin långivare, S, och S sätter in pengarna på sin bank, Bank D, också den liten med ett k-värde på 0 och ett c-värde på 0,1, så görs följande konteringar:

48

Balansräkningen för bank D skulle i sin tur se ut såhär:

49

Den totala kontobalansen i ett system av mycket små banker är lika med summan av en talserie som är identisk med den i formel [8], vilken hänvisade till en bank med monopolställning:

26    ;

 

 

 

Eftersom a=d=1 000 000 p.e. som ursprungligen sattes in erhålles de totala depositionerna genom formeln:

27

 

Denna formel är identisk med bankmultiplikatorn i fallet med en ensam bank med monopolställning [14].

Låt oss även komma ihåg att:

28

 

Med tanke på att banksystemet i detta fall består av små banker och k=0 så får vi r=1–c=0,9 om vi substituerar för k i formel [28], vilket vi redan kände till.

Därför ger ett helt banksystem bestående av småbanker upphov till en saldovolym (10 000 000 p.e.) och en nettokreditexpansion (9 000 000 p.e.) som är identiska med de som en bank med monopolställning frambringar, för vilken k=1. Dessa resultat sammanfattas i Tabell IV-2.

Ett system av småbanker (där k=0) är helt klart ett undantagsfall inom banksystemet som helhet (där k är mindre än 1 men större än 0). Det är emellertid ett lättförståeligt exempel och därför i allmänhet den modell som läroböcker använder sig av för att förklara skapandet av kreditpengar i det finansiella systemet.[1]

IV-2

Även ett banksystem bestående av en bank med monopolställning (när k=1) är ett unikt fall inom den bredare kategorin av banker som expanderar kontomedel och krediter.

Slutsatsen är att två särskilda fall leder till identiska resultat när det gäller kreditskapande (9 000 000 p.e.) och den totala volymen depositioner (10 000 000 p.e.). Det första fallet är ett banksystem med småbanker som alla har ett k-värde lika med noll. Det andra rör en ensam bank med ett k-värde på ett. Då båda fallen är lätta att förstå används de i allmänhet som exempel i läroböcker i syfte att förklara kreditskapande och mängden skapade kontomedel av banksystemet. Beroende på texten hänvisar författaren antingen till ett system av småbanker eller till en enda bank med monopolställning (eller en vars kunder är slutgiltiga mottagare av den utlåning som beviljas av banken).[2]


[1]           Se till exempel Juan Torres López, Introducción a la economía política (Madrid: Editorial Cívitas, 1992), s. 236–39; och José Casas Pardo, Curso de economía, 5:e uppl. (Madrid, 1985), s. 864–66.

[2]           Detta är exemplet som Bresciani-Turroni föredrar att använda i sin bok Curso de economía, vol. 2, s. 133–38.


Texten har översatts till svenska av Ola Nevander.

Kommentera

E-postadressen publiceras inte. Obligatoriska fält är märkta *